
Debugging of RxJS-Based Applications
Manuel Alabor

Eastern Switzerland University of Applied Sciences
Rapperswil, Switzerland
manuel.alabor@ost.ch

Markus Stolze
Eastern Switzerland University of Applied Sciences

Rapperswil, Switzerland
markus.stolze@ost.ch

Abstract
RxJS is a popular library to implement data-flow-oriented
applications with JavaScript using reactive programming
principles. This way of programming bears new challenges
for traditional debuggers: Their focus on imperative program-
ming limits their applicability to problems originated in the
declarative programming paradigm. The goals of this paper
are: (i) to understand how software engineers debug RxJS-
based applications, what tools do they use, what techniques
they apply; (ii) to understand what are the most prevalent
challenges they face while doing so; and (iii) to provide a
course of action to resolve these challenges in a future itera-
tion on the topic. We learned about the debugging habits of
ten professionals using interviews, and hands-on war story
reports. Based on this data, we designed and executed an ob-
servational study with four subjects to verify that engineers
predominantly augment source code with manual trace logs
instead of using specialized debugging utilities. In the end,
we identified the lack of fully integrated RxJS-specific debug-
ging solutions in existing development environments as the
most significant reason why engineers do not make use of
such tools. We decided to elaborate on how to resolve this
situation in our future work.

CCS Concepts: • Software and its engineering;

Keywords: reactive programming, debugging, empirical soft-
ware engineering

ACM Reference Format:
Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-Based
Applications. In Proceedings of the 7th ACM SIGPLAN International
Workshop on Reactive and Event-Based Languages and Systems (RE-
BLS ’20), November 16, 2020, Virtual, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3427763.3428313

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
REBLS ’20, November 16, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8188-8/20/11. . . $15.00
https://doi.org/10.1145/3427763.3428313

User

System

UI

Interaction

Update Data Flow Interaction Data Flow

Figure 1. Basic data-flows in a UI Application.

1 Introduction
The (graphical) user interface (UI or GUI) of an application
handles two constant flows of data: External user input (e.g.
mouse, touch, or keyboard interaction) is interpreted and
forwarded to the system. Once the system processed an inter-
action and updated its internal state accordingly, it notifies
the UI about these changes, which are relayed to the user.

To implement the data-flows as shown in Figure 1 to drive
a UI, the Observer design pattern[7] is often used and varia-
tions of the pattern are omnipresent today[4].
The Observer design pattern has its roots in the Object

Oriented Programming paradigm (OOP), hence relies on
imperative code constructs to handle a data-flow. Reactive
Programming (RP) is another approach to realize such flows:
It inherits the declarative way of implementing functional-
ity from Functional Programming (FP), i.e., data-flows are
described rather than implemented step by step[5]. RP func-
tionality is usually available in the form of a library providing
necessary abstractions, for imperative as well as declarative
programming languages.

According to the IEEE Standard Glossary of Software En-
gineering, debugging is an activity “to detect, locate, and
correct faults in a computer program.”[1] From interpreting
memory dumps, manually adding log statements to trace
program execution up to the point where specialized debug-
ging programs can interrupt a running process and interact
with it on a low level, debugging utilities took different forms
over time.

15

https://doi.org/10.1145/3427763.3428313
https://doi.org/10.1145/3427763.3428313

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

Modern IDEs and internet browsers ship with their own
set of debugging tools. These debuggers are specialized in
working with imperative, control-flow-oriented program
code. The following example helps us to illustrate the impli-
cations of this: Assuming an engineer is inspecting a piece
of code and wants to know which part of the program was
executed right before. For a program implemented using the
imperative paradigm, the call stack gives a clear answer to
this question. Hence the stack frames represent each point
in the program execution. In a data-flow-oriented program
implemented using RP, the stack trace for a transformation
function in the flow will not point to its logical predeces-
sor. Instead, the stack frames lead to the internals of the RP
runtime environment.

This example demonstrates the limits of a traditional control-
flow oriented debugger, which cannot interpret RP abstrac-
tions. As a result, these debuggers are not able to give the
correct answer to a data-flow-specific inquiry. There have
been numerous efforts to provide engineers with improved
debugging utilities for RP [17] [18] [6]. However, none of
these have seen broad adoption by practitioners yet. To gain
a better understanding of the underlying root causes, we
conducted interviews with several software engineers and
collected “war stories” about the challenges they face in
their day-to-day jobs when using RP. Based on this collected
evidence, we will validate their statements in an observa-
tional study using RxJS and search for an answer to our first
research question:

• RQ1: What challenges do software engineers face when
debugging RxJS-based applications?

In response to this, we are going to present a concept on
how to resolve previously identified challenges and answer
the second research question:

• RQ2: How can the experience of software engineers dur-
ing the debugging process of RxJS-based applications be
improved?

The implementation and validation of these proposals
lead to our third and last research question, which will be
investigated in our future research:

• RQ3: What is the impact of proposed solutions on the
debugging experience of software engineers?

We will conclude this introductory section with the clar-
ification of important terms and a view on known RP de-
bugging utilities. Section 2 gives an overview of the insights
from the conducted interviews and the collected war story
reports. We present our observational study intended to val-
idate results from the interviews and reports in Section 3,
which allow us to answer RQ1. Before our final conclusion,
we will answer RQ2 in Section 4 “Future Work” and review
the threats to validity regarding our study in Section 5.

1.1 Reactive Programming
RP is a declarative programming paradigm that is strongly
influenced by FP. While engineers use imperative program-
ming languages to specify every step how a program has to
do something, declarative languages allow to describe what
the program should achieve ultimately. A runtime system
then figures out away to satisfy that description and executes
it. RP functionality is usually provided in form of a language
extension for a specific programming language (e.g. REScala
for Scala[17]) or as a library (e.g. RxJS for JavaScript[15])

Either way, both usually provide a (i) domain specific lan-
guage (DSL) to describe data-flow graphs, how they depend
on each other and how data flowing through should be trans-
formed. At program execution, a (ii) runtime environment
evaluates these descriptions and creates a representation
of the specified graphs. It then takes care that values are
processed and propagated correctly through them as well as
that a consistent system state[5] is always maintained.

1.2 ReactiveX and RxJS
“Reactive Extensions” (ReactiveX) is an open-source project.
Its members and contributors created a generic description
of a RP API. They further provide reference implementations
of this API along with RP language extensions for various
programming languages like Java, C#, or JavaScript1. Reac-
tiveX summarizes the API as “. . . a combination of the best
ideas from the Observer pattern, the Iterator pattern, and
functional programming”[14]. The core concept of the API
specification is the Observable2: An observable can be com-
posed with other observables to form a data-flow graph.
Once an observable gets subscribed, it might push (“emit”)
an arbitrary number of values to the subscriber until it either
completes, fails, or gets unsubscribed again. There is a multi-
tude of operator functions available which allow the transfor-
mation of values and composition with other (higher-order3)
observables. The mechanism of subscribing to an observable
is closely related to the Observer design patterns attach
method.

RxJS[15] is the reference implementation of the ReactiveX
API specification for JavaScript. Its current major version 6 is
implemented using TypeScript and is used by large projects
like Angular[8]. Listing 1 shows an example of RP using RxJS
in TypeScript.
The RxJS community uses marble diagrams as shown in

Figure 2 to document [19] the runtime behavior of an ob-
servable visually. Unit test libraries[16] use this abstraction
to encode the behavior of mocked observables or to describe
assertions.
1http://reactivex.io/languages.html
2There is no known relation between ReactiveX’ concept of the Observable
and the deprecated Java class java.util.Observable.
3An observable emitted by another observable is considered a Higher-Order
observable. This naming is related to the concept of higher-order functions
in mathematics and computer science.

16

http://reactivex.io/languages.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Observable.html

Debugging of RxJS-Based Applications REBLS ’20, November 16, 2020, Virtual, USA

1 import { of } from 'rxjs';
2 import { filter , map } from 'rxjs/operators';
3

4 of (0, 1, 2, 3, 4). pipe(// Create observable
5 filter (i => i < 4), // Omit integers >= 4
6 map(i => i ∗ 2) // Multiply int. by 2
7). subscribe (console . log) // Logs: 0, 2, 4, 6

Listing 1. Basic RxJS example creating an observable
emitting four integers. Each integer is processed by two
operators and finally written to the console.

0 2 4 6

Figure 2. A Marble Diagram visualizing the observable in
Listing 1. From left to right, each marble represents an emit-
ted value. The vertical line at the last marble indicates that
the observable completed after emitting 6.

Gather
Context

Instrument
Hypothesis

Test
Hypothesis

Hypothesis to test

Modified system

Information

Figure 3. Debugging Process Model after Layman et al. [10]

1.3 Debugging Process Model
Layman et al. [10] use the debugging process model, an
iterative hypothesis refinement process, to formalize the
general activity of debugging a computer program in their
paper.

The process consists of three steps and includes a feedback
loop: After the engineer (i) gathered sufficient context infor-
mation (e.g. ways to reproduce the failure or details about
external factors) and understands the situation satisfactory,
they generate a hypothesis on the origins of the bug or what
impact a change made to the program might have. With the

intent to proof their hypothesis, the engineer then (ii) instru-
ments the defective program using suitable tools (e.g. adding
log statements, setting breakpoints or removing code parts).
Finally, the instrumented system gets (iii) challenged against
the formed hypothesis. E.g., code statements are executed
step by step using a debugger or trace logs are analyzed and
compared against expected behavior. If the hypothesis turns
out to be correct, the debugging process stops. If not, the
newly gained knowledge about the problem is used to build
a refined hypothesis and start a new iteration.

1.4 Debugger Concepts
Software engineers have many tools and utilities at hand,
which help them to interact with and gain insight on the
behavior of a defective program. Tools range from the instru-
mentation of source code with trace log statements (manu-
ally or automated) to specialized utilities allowing them to
directly interact with a program at runtime.

Many of these specialized utilities differentiate themselves
fundamentally in regards of the concepts they are built upon.
We identified and will use the following three categories to
structure them:
Traditional (i) imperative-focused debuggers provide the

functionality to interact with programs at runtime: Once
a breakpoint pauses the program execution, they provide
access to the current call stack and the values assigned to
variables of a given stack frame. Manual control of the pro-
gram execution allows inspecting its behavior step by step
as well as assigning new values to variables “on-the-fly.”
RP provides its own set of challenges to debuggers: Call

stacks expose internal invocations of the RP runtime system
rather than, e.g., the predecessor transformation according
to the data-flow graph. Further, breakpoints can only be
used on the imperative parts of transformations and lack the
functionality of interrupting execution when the RP runtime
hits a specific node within the graph. A (ii) reactive debugger
can interpret the underlying graph model of a RP runtime
system. It leverages on it and provides specialized tools e.g.,
to navigate, visualize or instrument the data-flow graph [18]
[6] [3].
Traditional, as well as reactive debuggers work with the

current state of a program’s execution only. They lack in-
formation about what happened before or what is going to
happen in the future. This shortcoming is tedious, especially
when debugging a problem depending on many complex
circumstances in a system. An (iii) omniscient debugger [13]
[12] does not interact with the executed program directly.
Instead, it records runtime telemetry and provides an inter-
face for later inspection. Engineers can “time travel” back
and forth through the program execution trace without the
hassle of reconstructing a given failure situation over and
over again.

17

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

1.5 RxJS Debugging Utilities
1.5.1 rxjs-spy. rxjs-spy[2] is a logging library specialized
on RxJS observables. Once an observable is tagged with
an arbitrary string identifier, a monitor can generate trace
logs whenever a value is emitted as well as when individual
life cycle events occur (i.e. subscribe, unsubscribe, complete
and error). Ideally, tagged observables are created during
development when the data-flows are composed for the first
time. Like tap4, the tag operator in Listing 2 is completely
transparent to the actual data-flow.

1 import { create } from 'rxjs-spy';
2 import { tag } from 'rxjs-spy/operators';
3

4 const spy = create (); // Create monitor
5 spy. log (/ multiply /); // Log tags matching
6 // RegEx /multiply/
7 interval (1000). pipe(
8 map(i => i ∗ 2),
9 tag ('multiply'), // Tag with "multiply"
10 map(i => i − 1),
11 tag ('subtract') // Tag with "subtract"
12 take (2)
13). subscribe ();

Listing 2. Application of rxjs-spy using its tag operator
on Line 9 and 11.

The data-flow configuration in Listing 2 will produce a
trace log as shown in Listing 3 eventually.

1 Tag = multiply ; notification = subscribe
2 Tag = multiply ; notification = next ; value = 0
3 Tag = multiply ; notification = next ; value = 2
4 Tag = multiply ; notification = unsubscribe

Listing 3. rxjs-spy execution trace log generated by de-
fault monitor in Listing 2 on Line 4.

Additional features are available through the library’s
console interface. E.g., a tagged observable can be paused, so
values get collected rather than being emitted immediately.
The engineer can then emitted these values one after another
manually or resume all of them at once.

1.5.2 rxfiddle. rxfiddle, as proposed by Banken et al.[6] is
the first reference implementation of their RP debugger ar-
chitecture for the ReactiveX API specification. They describe
a software design consisting of two independent compo-
nents: The (i) host instrumentation augments a ReactiveX
API implementation to emit events at runtime (e.g., emitting
4RxJS’ tap operator is used to execute a side effect whenever an observable
emits a value. It cannot modify or influence the emitted value nor the
observable in any way.

a value or life cycle events) and forwards them to the second
component. The (ii) visualizer interprets the events and dis-
plays them along two dimensions: The StoryFlow graph[11]
shows when an observable is created and how it interacts
with other observables, whereas a marble diagram visualizes
the values emitted over time for every observable.

The reference implementation supports event processing
for the (outdated) RxJS major versions 4 and 5 only and
is available as an online application5. A proof-of-concept
implementation working on a local computer is available
through the projects Git repository6.

1.5.3 RxViz. RxViz is a visualizer utility available online7.
It is an “animated playground for Rx observables”[3] and
allows the visualization of RxJS observables using marble
diagrams. Engineers implement or copy-paste data-flows
in an editor window using JavaScript. A diagram is gener-
ated based on this code over a configurable time interval.
The diagrams are rendered immediately and are available as
downloadable SVG files.

1.5.4 rxjs-playground. Building on the basic concept of
marble diagrams, rxjs-playground8 is a sophisticated sandbox
to simulate and visualize RxJS observables interactively in
the browser. Users define editable and computed observables,
represented as vertical marble diagrams: Values emitted by
an editable observable can be created and modified either
by interacting with its marble diagram directly or using a
simple JSON syntax. The behavior of a computed observable
is controlled by implementing functionality with TypeScript
in the provided editor.
rxjs-playground renders the values and life cycle events

for all observables in real-time, allowing quick iterations on
a specific piece of code.

2 Interviews and War Stories
On the way of finding our interview partners and war stories
reporters, we noticed it to be a challenge to find people who
understand themselves as users of RP and related technolo-
gies. E.g., even though Angular makes heavy use of RxJS, we
will see that many engineers do not directly interact with its
abstractions when building “basic” UIs. In the end, we were
able to conduct interviews with five engineers and collect
reports on hands-on experiences from another five.

2.1 Interviews
We organized informal interviews, which allowed us to gain
insight into how software engineers work with RP in their
daily jobs. We talked to five engineers (following identified
using the codes I1 through I5) and asked them about the

5https://rxfiddle.net/
6https://github.com/hermanbanken/RxFiddle
7https://rxviz.com/
8https://hediet.github.io/rxjs-playground

18

https://rxfiddle.net/
https://github.com/hermanbanken/RxFiddle
https://rxviz.com/
https://hediet.github.io/rxjs-playground

Debugging of RxJS-Based Applications REBLS ’20, November 16, 2020, Virtual, USA

technologies they use, what their personal experience with
RP was, what they most liked and most disliked about it.
We used video chat to conduct all interviews remotely. The
interview with I4 was done in English, all others in Swiss-
German. Therefore, quotes by I1, I2, I3, and I5 are translated
statements.
Our first three interview partners I1 to I3 stated to work

currently or more recently have worked with RxJS in con-
junction with Angular and ngrx9 to develop frontend web
applications. I4 was a proficient RxJS user. Our fifth interview
partner I5 was a backend engineer who used akka-streams10
in Scala to model data-flows for a WebSocket-based11, reac-
tive API layer serving a web frontend application.
All interview partners pointed out that they like RP be-

cause it provides them with “[. . .] a good way for composing
multiple data sources” (I1) and, combined with “[. . .] a stat-
ically typed language, RP guarantees some kind of basic
formal correctness of a program” (I5). Hence a significant
strength of RP seems to be the ability to describe complex
data-flow constructs using a specialized DSL. However, they
also pointed to current challenges: The learning curve can
be steep for a novice engineer: “Being challenged with new
abstractions [of Angular and ngrx] already, I experienced
RxJS concepts and operators to be hard to convey” stated I3,
giving lectures in frontend web application development.
It was interesting to hear that, especially in the area of

developing web applications using Angular, our partners
seemed not to have to work with pure RxJS code often. E.g.,
when using ngrx for state management, “The framework
hides observables from its main API surface carefully, so
you do not have to interact with them directly” (I2). As soon
as our interviewees had to extend built-in functionalities
with own features, e.g., a new effect12, I1 and I2 valued the
possibility to interact with underlying observables though.
When asked explicitly about what they dislike the most

about RP, all interview partners, with no exception, empha-
sized the debugging process of an RP program as unsatisfac-
tory. The fact that our interviewees remembered the search
for a bug as something negative did not surprise, hence a
bug is commonly something negative afflicted. It was re-
markable though that statements like “In 99% of all cases, I
add console.log statements manually and run the program
over and over again, trying to understand what is happening”
(I1) were prevalent and showed why our partners dislike RP
debugging in particular. I1 to I3 mentioned the Redux Dev-
Tools13 as particular helpful when debugging Angular/ngrx
applications nonetheless. Further, I1 noted marble diagrams
as valuable in order to understand how an RxJS observable
works, whether during development or debugging.
9https://ngrx.io/
10https://akka.io/
11https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
12https://ngrx.io/guide/effects
13https://chrome.google.com/webstore/detail/redux-devtools

2.2 War Stories
After we built an intuition for how software engineers work
with RP by evaluating the interviews, we were interested
in more RxJS-specific, hands-on experiences. We asked the
engineering community via Twitter14 about their personal,
most recent RxJS debugging war story and sent out various
emails with the same request. After reaching out, we were
able to collect five responses in English: One by an RxJS core
team member (R1), two from Angular Google Developer
Experts (R2/3) and another set of reports by two software
engineers (R4/5) building web and mobile applications using
React and RxJS, which includes the author of this paper.
In their report, R3 focused on how they built code with

improved testability because of recent changes in RxJS: “[. . .]
in the beginning, it was very hard to write asynchronous
tests [. . .]. I really disliked [. . .] you were forced to pass a
TestScheduler”. Allowing to pass the scheduler explicitly as
parameter forced them to introduce code, which was only
necessary for testing reasons they stated further. With its
current major version, RxJS 6 improved profoundly on the
TestScheduler. The runtime environment itself can be aug-
mented with the scheduler now, which results in cleaner
code.

Even though the share of non-productive, testing-related
code necessary to build mature RxJS-based applications was
mentioned to have decreased today, R2 as well as R4 and R5
commented on the common practice of manually modifying
production code during debugging sessions, hence confirm-
ing earlier statements from our interview partners. R5 de-
scribed a specific scenario where they suspected a problem
within a complex observable composition: Having multiple
asynchronous, remote data sources, they used observables
to model the dependencies between them and implemented
computations on their results as operators. On top, each
data source could re-emit updated versions of previously re-
quested information at any time. After a week in production,
though tested thoroughly, the first of many bugs got re-
ported: “Displayed numbers kept changing where we did not
expected them to. In other places, they were not rerendered
where they were supposed to, e.g. after we changed them
in the system,” they told us. The browser’s debugger tools
and its breakpoints did not help much since the operators
were executed several times. Other parts of the stream were
impossible to get a handle upon, even with conditional break-
points. “I started to inspect the flow [. . .] with console.logs
and later also using tags from rxjs-spy which exposed more
detailed life cycle information.” After a time-consuming log
analysis, they finally were able to resolve all bugs. The log
statements added were removed in the aftermath, though
the rxjs-spy-related code was left in the observable stream
in case they might be needed again in the future.

14https://twitter.com/swissmanu/status/1242429409208029185

19

https://ngrx.io/
https://akka.io/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://ngrx.io/guide/effects
https://chrome.google.com/webstore/detail/redux-devtools
https://twitter.com/swissmanu/status/1242429409208029185

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

In a related war story, R2 discloses similar invasive prac-
tices using an external tool when they implemented logic
to request and cache batches of a remote resource: “It took
quite some time to get it right and one of the most invalu-
able tools proved to be Stackblitz15 which gave us the ability
to quickly create smaller working examples and iterate on
them.” This sandboxed setting allowed them to run, debug,
and iterate on selected pieces of a larger observable stream.
Even though the final result had to be integrated back into
the actual application, the extra effort was worth the result
the engineer concluded in their report.

A final story describes yet another way of utilizing an ex-
ternal tool: Rather than using a dedicated sandbox to develop
pieces of a more complex system, R5 used Rx Visualizer, an
online visualization utility to generate marble diagrams from
real code. Like in the report before, it was necessary to ex-
tract parts from the codebase of the actual application. Once
done, the visualizations helped to understand when values
got emitted, when subscriptions changed and when observ-
ables completed: “Marble diagrams were a huge help in order
to understand detailed runtime and life cycle behaviors of
the observable.”

2.3 Insights
Software engineers value how they can describe data-flows
using a RP DSL, even though the learning curve was per-
ceived as steep. We heard some interesting reports on how
RxJS is applied in a daily development environment: Mar-
ble diagrams help to understand an observables behavior
and are useful to implement tests. Large frameworks like
Angular hide some of the complexity of RxJS but allow en-
gineers to make use of its full power once the pre-provided
functionality needs to be extended.
Most participants considered a statically typed language

like TypeScript, a fundamental necessity allowing them to
implement data-flow graphs with minimal, formal correct-
ness, as we heard in the interviews. When the engineers
needed to interact with data-flow graphs at runtime, e.g. to
debug the behavior of a specific part of a stream, we noticed
throughout most reports that they were not 100% satisfied
with the feature set they were provided by traditional debug-
ging tools. Almost all of the reporters referred to the practice
of modifying their source code manually and adding trace
log statements where they assumed a problem to overcome
the feature gaps in traditional debuggers. Listing 4 exempli-
fies two challenges when debugging a stream of observables
with imperative-focused debugging tools.

Where a breakpoint can easily be added to Line 2 within
the arrow function, this is impossible for take on Line 3. One
would need to place the breakpoint within the operator’s
internal implementation instead, which can be cumbersome

15Stackblitz is a full JavaScript development environment available online
https://stackblitz.com/

1 interval (1000). pipe(
2 map(i => i ∗ 2),
3 take (4),
4 tap(console . log)
5). subscribe (showValue); // Emits: 0, 2, 4, 6

Listing 4. An observable emitting a sequence of increas-
ing integers every second. Traditional breakpoints are
possible inside the arrow function on Line 2. Though a
breakpoint can be added on Line 3, it will never be hit
during the actual execution of the take operator. Line 4
shows a manually introduced trace log statement using
the tap side effect operator.

in case the operator is used in a different stream as well.
Once the breakpoint on Line 2 interrupts the execution of
the program, we will notice another shortcoming related
to this circumstance: Rather than representing the logical
flow implemented using the DSL, the call stack as shown
in Listing 5 points deep into RxJS’ internal implementation.
That is why a traditional debugger’s step controls cannot
operate on the data-flow graph; It just can not interpret this
level of abstraction.

1 <anonymous> RxJS
2 rxjs 6.5.2/ internal / operators /map.js :49
3 rxjs 6.5.2/ internal / Subscriber . js :66
4 rxjs 6.5.2/ internal /observable / interval . js :23
5 // ...

Listing 5. A call stack showing the internal RxJS exe-
cution stack for a breakpoint in the arrow function on
Line 2 in Listing 4.

We learned that simple trace augmentation, like on Line 4
in Listing 4, logs emitted values only. Such trace logsmight be
helpful when debugging simple graph compositions. Though,
they lack life cycle information of the underlying observables
completely. The importance of such information was em-
phasized by R5 describing their usage of rxjs-spy: To know,
when an observable gets subscribed and unsubscribed, when
it completes or fails, helped them to solve complex problems
multiple times. When dealing with higher-order observables,
they value this information even as indispensable.

Finally, we understood that if a problem is hard to replicate
within the actual application, the engineers use external
sandbox development environments to isolate specific parts
of an observable composition. These allow them to iterate
on it faster than it would be possible otherwise.

After the evaluation of all reports and interviews, we spec-
ulate that software engineers truly lack, but also seldomly
use debugging tools that can handle RP concepts provided
by RxJS. Even though traditional debuggers might help to

20

https://stackblitz.com/

Debugging of RxJS-Based Applications REBLS ’20, November 16, 2020, Virtual, USA

some extent, they do not provide all the information an en-
gineer requires in a particular situation. Instead, they turn
to manual trace log augmentation and extraction of source
code as we saw repeatedly.

3 Validation
Almost all participants from our interviews and war story
reports showed a tendency to manually modify source code
with trace logs during the hypothesis instrumentation phase
when debugging RxJS code. This practice is often not per-
ceived as efficient since the evaluation and interpretation of
trace information tends to be cumbersome and very time-
consuming. Also, removing log statements after a successful
debugging process might leave new bugs in production code
if not done carefully. Like Banken et al. [6] before, we identi-
fied this technique as one of the primary debugging practices
when software engineers work with RxJS-based code.

That is why we saw demand in validating this statement
and previous findings about manual code modification for
debugging reasons with an observational study. Our study
sought to validate the following hypothesis:

• Hypothesis: If software engineers must solve an RxJS-
based problem, then they will instrument the code man-
ually in order to understand its behavior.

3.1 Study Design
The subjects for our study were required to have experi-
ence in developing applications with RxJS. We recruited four
subjects willing to participate in our experiment. We were
interested in seeing how the subjects apply debugging tech-
niques they would use in everyday situations in their jobs.
Hence we decided to conduct the experiment in a somewhat
uncontrolled environment where the subjects used their own
devices with their development environments of personal
preference. Our objective for the experiment was communi-
cated as broad as possible to prevent bias: “We are interested
in how you debug a problem” did not mention our hypothesis
by intention.
We planned to have a one-hour session for the actual ex-

periment with each subject, followed-up by an unattended
after-action survey. We executed the experiment in two con-
secutive blocks of 25 minutes each. We provided a ZIP file16
containing the source code for two frontend web applica-
tions implemented using TypeScript and RxJS along with a
Jest test suite at the start of a session. Each of these appli-
cations was rigged with two to three bugs, which we asked
the subjects to identify and fix using whatever debugging
techniques they prefer and commonly use. Where the first
application required less complicated intervention to resolve
the contained bugs, the second application demanded sub-
stantial modifications in the data-flow as it made heavy use
of higher-order observables. The provided test suite allowed
16https://github.com/swissmanu/mse-pa1-experiment/archive/v1.0.2.zip

the subjects to understand the functional requirements of
each application as well as to quickly verify their changes to
be successful (or not).
A block was considered as complete once the test suite

signaled all bugs as resolved, or the 25 minutes expired. We
asked our subjects to act like in a pair programming situation
where they “think out loud” their thought process. Though
we refrained from answering any question related to the
“where” a bug has to be expected.

We sent out the participant briefing document to all of
our subjects a week before the experiment. We outlined the
course of action and provided them with an example ZIP file.
This file contained the same setup as the file provided at the
experiment and allowed the subjects to get accustomed to
things like starting the web applications or running the test
suites.
We decided to monitor our subjects’ progress remotely

using voice chat and screen sharing due to the COVID-19
situation at the time of our study. Furthermore, this allowed
us to record the sessions with relatively low technical effort
for later evaluation.
The after-action survey17 was provided within 24 hours

after a subject’s participation in the main part of the study.
We asked the subjects about (Q1) if they currently use RxJS
on or off their jobs, the (Q2) number of years they have
experience with RxJS, in (Q3) which field (like frontend,
backend or others) they use RxJS and finally (Q4) which
tools and techniques they use to debug RxJS-based code. The
respective answers allowed us to put the observed actions
into perspective and detect potential irregularities in case
a subject acted differently as they would have in a “real”
situation.

3.2 Study Execution and Results
After the subjects got themselves accustomed to the applica-
tion provided and understood its purpose, all of them used
the test suite to gather context about what features do not
work as expected initially. Further, all of them tried to recre-
ate the failing behavior in the UI manually. We could not
observe any of the subjects using external tools, e.g. RxViz,
to inspect specific code parts in isolation in later iterations
of the debugging process. Though, S4 noted that they would
have usually started to decompose the problem into smaller
pieces and observe their behavior in specific after the 25
minutes of the second block expired.
While all subjects added manual trace log statements to

existing arrow functions or by adding tap operators in the
instrument hypothesis phase, none of them used additional
libraries like rxjs-spy for doing so. S2 and S4 used the tradi-
tional debugging tools provided by their browser or IDE to

17https://github.com/swissmanu/mse-pa1-experiment/blob/
f70102885be86fb2323b9516005e1d6dfeb9795b/after-action-survey-
questions.md

21

https://github.com/swissmanu/mse-pa1-experiment/archive/v1.0.2.zip
https://github.com/swissmanu/mse-pa1-experiment/blob/f70102885be86fb2323b9516005e1d6dfeb9795b/after-action-survey-questions.md
https://github.com/swissmanu/mse-pa1-experiment/blob/f70102885be86fb2323b9516005e1d6dfeb9795b/after-action-survey-questions.md
https://github.com/swissmanu/mse-pa1-experiment/blob/f70102885be86fb2323b9516005e1d6dfeb9795b/after-action-survey-questions.md

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

Table 1. Observed practices and tool usage per subject.

Subject Trace Logs Debugger Add. Tools

S1 X

S2 X X

S3 X

S4 X X Next step

Table 2. Results per subject for each presented problem.

Subject Problem 1 Problem 2

S1 Time expired Time expired

S2 Time expired Time expired

S3 Time expired Time expired

S4 Solved Time expired

add breakpoints. Both of them commented on the inability of
stack traces to interpret RP abstractions as unsatisfying. We
could further observe a “trail-and-error” approach in later
iterations of the debugging process. The subjects started to
introduce modifications to the system, which they immedi-
ately tested against their latest hypothesis. Table 1 provides
an overview on the complete collected data regarding used
techniques and tools.

Only S4 was able to solve the first problem given, as shown
in Table 2. None of the subjects was able to successfully
identify and fix the bugs hidden in the second problemwithin
time.

The survey responses available in Table 3 showed that S2,
S3 and S4 had two or more years of experience with RxJS.
Where all of them use RxJS to develop frontend applications,
S4 declared having used RxJS for backend development as
well. When asked what tools they usually use for debug-
ging, S2, S3 and S4 stated to use the traditional debugger of
their IDE. S1 and S3 leverage additional tracing functional-
ity of rxjs-spy, and all four of our subjects use manual log
statements.

3.3 Interpretation
We were able to observe how all subjects predominantly
used manual source code augmentation by adding trace logs.
Two of the subjects used traditional debugging utilities in
order to inspect the program’s state at runtime in addition.
All subjects used the new information gained to refine their
hypothesis about underlying problems before starting a new
iteration in the debugging process. We could not observe
the extraction to and reintegration from an external tool.
All subjects exhibited the debugging behavior described in

Table 3. After-action survey responses per subject.

Subject Q1 Q2 Q3 Q4

S1 Yes 1 year Frontend Trace Logs, rxjs-
spy

S2 No > 3 years Frontend Debugger, Trace
Logs

S3 Yes 2 years Frontend Debugger, Trace
Logs, rxjs-spy

S4 No 2 years Frontend,
Backend

Debugger, Trace
Logs

our hypothesis. Further, we could verify previous results by
Banken et al. [6] successfully as well.

Even though S1 and S3 stated in the after-action survey to
regularly use rxjs-spy for debugging RxJS programs, neither
of them made use of this library during the experiment part
of the study.
Interviewing professionals, consolidating RxJS hands-on

experiences from the war stories, and evaluating the results
from our observational study showed us that software engi-
neers use a variety of practices, tools and utilities to debug
RP programs. Beside the habit of adding trace logs manually,
we saw them evidently trying to answer their debugging
hypotheses using traditional, imperative-focused debugger
utilities. The later way of debugging was repeatedly com-
mented as unsatisfying as these utilities cannot handle RP
constructs, and with this, cannot help to detect problems lo-
cated within these at all. The former way, the introduction of
manual log statements, was both described as the prevalent
way of debugging RxJS or as “the last resort” when no other
debugging technique helped before.
We heard further how engineers isolate specific observ-

ables from bigger data-flows and how they inspect those in
sandboxed environments and visualizers. This helps them
understanding the observable life cycle and value emitting
behaviors better and iterate faster in order to resolve prob-
lems.

More than 50% of our 14 peers throughout the interviews,
war story reports and the experiments after-action survey
stated to know about specific RxJS RP debugging tools. It
was apparent that all subjects during the observational study
refrained from using any of them, though. It is our specu-
lation that the subjects knowing about specific tools held
themselves back from using them because they perceived
the effort of setting them up (e.g., installing and configuring
rxjs-spy) as too time-consuming. Not having the “right” tool
available without significant additional effort is also what
we interpret from the statement by S4: Though they would
have started to extract parts of the data-flow and inspect it
with other tools, they would have done so only after the 25

22

Debugging of RxJS-Based Applications REBLS ’20, November 16, 2020, Virtual, USA

minutes of the block expired; Hence a more accessible way
allowing such analyses would have influenced the behavior
of the subject.

The best RP debugging tools are useless if either the hur-
dle to use them is too high, or engineers do not understand
which particular part of the debugging process they can
benefit from them. Salvaneschi et al. [18] provided in their
previous study on the Reactive Inspector for REScala evidence
on the effectiveness of a fully integrated RP debugging solu-
tion, which supports developers in their daily work using the
Eclipse IDE. Hence, we can postulate an answer to our first
research question RQ1: The most significant challenge soft-
ware engineers face when debugging RxJS-based programs
is to know when they should apply what tool to resolve their
current problem in the most efficient way.

4 Future Work
We see the biggest shortcoming of current RxJS-oriented
debugging solutions like rxjs-spy, RxFiddle, or RxViz in fact
that they are not integrated in established development en-
vironments (e.g., IDEs or internet browser developer tools).
This leads to the practice of manually augmenting code itself
rather then working with it in a less obtrusive, fully inte-
grated way as we were able to proof in our observational
study. Using specialized utilities is an extra effort an engi-
neer has to invest every time they want to debug a data-flow:
Either tagging an observable for rxjs-spy or extracting parts
of it to an external environment, all of these practices require
engineers to “go the extra mile” in order to inspect the run-
time behavior of an RxJS-based application. The additional
effort might be neglectable when treating a rather complex
data-flow composition. However, it holds back engineers
from applying the tools to simple observables like in the first
block of the experiment we conducted.

The observation that two out of four of our study subjects
tried to debug an RP application with traditional, imperative-
centric debugger utilities, as well as related statements from
the interviews and war stories, strengthened our assumption
regarding tool integration. Engineers expect the debugging
tools they know and rely on to give correct insight on every
program, no matter the paradigm (imperative or declarative)
with which it got implemented.

This leads us to the answer to our second research ques-
tion RQ2: We want to improve the experience of debugging
RxJS-based applications by providing RP specific debugging
utilities where software engineers expect them the most:
Fully integrated with the traditional debugger they know
from their IDE or browser developer tools18.
18A positive example of such a seamless integration is the debugger of
the Google Chrome developer tools: It combines call stack frames of asyn-
chronously executed functions[9] seamlessly with those of synchronously
executed code. This provides software engineers with a better understand-
ing about which part of the program triggered the statement they currently
inspect.

The answer on which RP debugging tool exactly (e.g., a
full reactive debugger or a visualizer using marble diagrams)
we are going to integrate, how such integration will look
like in detail, how it will support engineers in a particular
step of the debugging process, as well as the answer on RQ3
will be part of our future work on the topic of “Debugging
RxJS-based Applications”.

5 Threats to Validity
This study is subject to the following threats and limitations:

5.1 External Validity
The data we collected from interviews, war story reports,
and the observational study is based on a sample population
with 14 individuals. Hence, the results we conveyed in this
paper are not representative and are not transferable to the
entire software engineering population.

5.2 Internal Validity
The observational study was executed in an uncontrolled
environment. All subjects used their personal computers,
running their own software development environments. We
have no comparative data to measure how this design in-
fluenced the observed outcome, assuming that this setup
diminishes the reproducibility of the experiment.
We noticed that the subjects needed time to understand

the intention of the applications they were provided with
before they were able to start with the actual debugging
process. Since the amount of required time was different
from subject to subject, we suspect it influenced the result
of the experiment.

5.3 Construct Validity
The time limit of 25 minutes per experiment block bears the
potential to put the subjects under time pressure. This risk
might explain why we could not observe any more time-
consuming debugging techniques (e.g., installing additional
utilities like rxjs-spy) during the study.

6 Conclusion
In this paper, we have explored how software engineers de-
bug data-flow-oriented programs implemented using RxJS.
We presented an observational study to validate a hypothesis
based on the outcome of ten individual interviews and hands-
on experience reports from software engineering profession-
als. More than 50% of the 14 engineers we worked with
during our research told us that they know of the existence
of specific debugging tools for RP with RxJS. Nonetheless,
the experiment conducted with four participants allowed us
to prove that engineers augment source code manually with
trace logs instead of using such specialized utilities.
We identified the fact that RxJS specific debugging tools

are not tightly integrated with existing, traditional debug-
gers in IDEs and the developer tools of internet browsers as

23

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

the main reason why software engineers do not use them
more often. In order to lower the effort necessary to use
specialized RP debugging tools for engineers, we declared
the integration of such as the matter for our own future
research.

Acknowledgments
We want to thank the engineers who participated in our
study for their time.

References
[1] 1990. IEEE Standard Glossary of Software Engineering Terminology.

https://doi.org/10.1109/IEEESTD.1990.101064
[2] 2019. An example using the console API | rxjs-spy. Re-

trieved 17-May-2020 from https://cartant.github.io/rxjs-spy/
Versioned as https://github.com/cartant/rxjs-spy/tree/
2bffdee2d5f712d70583ef48297446bd31a9a6f4.

[3] 2020. RxViz - Animated playground for Rx Observables. Retrieved
16-May-2020 from https://rxviz.com/ Versioned as https://github.com/
moroshko/rxviz/tree/51a737717a27f15b68f907b2329f7b0b6b11cb2b.

[4] Manuel Alabor. 2019. Reactive Applications in Frontend Engineering
Today. (2019). https://github.com/swissmanu/mse-seminar-reactive-
applications-in-frontend-engineering-today/releases/tag/v1.0.1.

[5] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. 2013. A Survey on Reac-
tive Programming. ACM Comput. Surv. 45, 4, Article 52 (Aug. 2013),
34 pages. https://doi.org/10.1145/2501654.2501666

[6] Herman Banken, Erik Meijer, and Georgios Gousios. 2018. Debugging
Data Flows in Reactive Programs. In Proceedings of the 40th Interna-
tional Conference on Software Engineering (Gothenburg, Sweden) (ICSE
âĂŹ18). Association for Computing Machinery, New York, NY, USA,
752âĂŞ763. https://doi.org/10.1145/3180155.3180156

[7] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. 1995.
Design patterns: elements of reusable object-oriented software. Pearson
Education India.

[8] Google. 2020. Angular - Observables in Angular. Retrieved 24-
Apr-2020 from https://angular.io/guide/observables-in-angular
Versioned as https://github.com/angular/angular/blob/
64ac1062489bbc97a0d4b95af5ce9566091fe044/aio/content/guide/
observables-in-angular.md.

[9] Google. 2020. JavaScript Debugging Reference. Retrieved 16-Aug-
2020 from https://developers.google.com/web/tools/chrome-
devtools/javascript/reference#call-stack Versioned as
https://web.archive.org/web/20200713153259/https://developers.
google.com/web/tools/chrome-devtools/javascript/reference.

[10] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer,
Robert Deline, and Gina Venolia. 2013. Debugging Revisited: To-
ward Understanding the Debugging Needs of Contemporary Soft-
ware Developers. In 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement. IEEE, 383âĂŞ392.
https://doi.org/10.1109/ESEM.2013.43

[11] Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. 2013.
StoryFlow: Tracking the Evolution of Stories. IEEE Transactions on
Visualization and Computer Graphics (Proceedings of IEEE InfoVis 2013)
19, 12 (2013), 2436–2445.

[12] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert
Noll, and Nimrod Partush. 2017. Engineering Record And Replay For
Deployability: Extended Technical Report. CoRR abs/1705.05937 (2017).
arXiv:1705.05937 http://arxiv.org/abs/1705.05937

[13] G. Pothier and E. Tanter. 2009. Back to the Future: Omniscient Debug-
ging. IEEE Software 26, 6 (2009), 78–85.

[14] ReactiveX. 2020. ReactiveX. Retrieved 24-Apr-2020 from
http://reactivex.io/ Versioned as https://web.archive.org/web/
20200419004415/http://reactivex.io/.

[15] ReactiveX. 2020. RxJS - Introduction. Retrieved 15-Aug-2020 from
https://rxjs.dev/guide/overview Versioned as https://github.com/
ReactiveX/rxjs/blob/46e35f71b02d02c5a7d7f426e78eadd625c1a67a/
docs_app/content/guide/overview.md.

[16] ReactiveX. 2020. RxJS - Testing RxJS Code with Marble Diagrams.
Retrieved 16-May-2020 from https://rxjs-dev.firebaseapp.com/guide/
testing/marble-testing Version 6.5.5-local+sha.7e4589a1.

[17] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
Bridging between Object-Oriented and Functional Style in Reactive
Applications. In Proceedings of the 13th International Conference on
Modularity (Lugano, Switzerland) (MODULARITY âĂŹ14). Association
for Computing Machinery, New York, NY, USA, 25âĂŞ36. https:
//doi.org/10.1145/2577080.2577083

[18] Guido Salvaneschi and Mira Mezini. 2016. Debugging for Reactive
Programming. In Proceedings of the 38th International Conference on
Software Engineering (Austin, Texas) (ICSE âĂŹ16). Association for
Computing Machinery, New York, NY, USA, 796âĂŞ807. https://doi.
org/10.1145/2884781.2884815

[19] Andre Staltz and Contributors. 2019. RxJS Marbles. Retrieved 16-May-
2020 from https://rxmarbles.com

24

https://doi.org/10.1109/IEEESTD.1990.101064
https://cartant.github.io/rxjs-spy/
https://github.com/cartant/rxjs-spy/tree/2bffdee2d5f712d70583ef48297446bd31a9a6f4
https://github.com/cartant/rxjs-spy/tree/2bffdee2d5f712d70583ef48297446bd31a9a6f4
https://rxviz.com/
https://github.com/moroshko/rxviz/tree/51a737717a27f15b68f907b2329f7b0b6b11cb2b
https://github.com/moroshko/rxviz/tree/51a737717a27f15b68f907b2329f7b0b6b11cb2b
https://github.com/swissmanu/mse-seminar-reactive-applications-in-frontend-engineering-today/releases/tag/v1.0.1
https://github.com/swissmanu/mse-seminar-reactive-applications-in-frontend-engineering-today/releases/tag/v1.0.1
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/3180155.3180156
https://angular.io/guide/observables-in-angular
https://github.com/angular/angular/blob/64ac1062489bbc97a0d4b95af5ce9566091fe044/aio/content/guide/observables-in-angular.md
https://github.com/angular/angular/blob/64ac1062489bbc97a0d4b95af5ce9566091fe044/aio/content/guide/observables-in-angular.md
https://github.com/angular/angular/blob/64ac1062489bbc97a0d4b95af5ce9566091fe044/aio/content/guide/observables-in-angular.md
https://developers.google.com/web/tools/chrome-devtools/javascript/reference#call-stack
https://developers.google.com/web/tools/chrome-devtools/javascript/reference#call-stack
https://web.archive.org/web/20200713153259/https://developers.google.com/web/tools/chrome-devtools/javascript/reference
https://web.archive.org/web/20200713153259/https://developers.google.com/web/tools/chrome-devtools/javascript/reference
https://doi.org/10.1109/ESEM.2013.43
https://arxiv.org/abs/1705.05937
http://arxiv.org/abs/1705.05937
http://reactivex.io/
https://web.archive.org/web/20200419004415/http://reactivex.io/
https://web.archive.org/web/20200419004415/http://reactivex.io/
https://rxjs.dev/guide/overview
https://github.com/ReactiveX/rxjs/blob/46e35f71b02d02c5a7d7f426e78eadd625c1a67a/docs_app/content/guide/overview.md
https://github.com/ReactiveX/rxjs/blob/46e35f71b02d02c5a7d7f426e78eadd625c1a67a/docs_app/content/guide/overview.md
https://github.com/ReactiveX/rxjs/blob/46e35f71b02d02c5a7d7f426e78eadd625c1a67a/docs_app/content/guide/overview.md
https://rxjs-dev.firebaseapp.com/guide/testing/marble-testing
https://rxjs-dev.firebaseapp.com/guide/testing/marble-testing
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2884781.2884815
https://doi.org/10.1145/2884781.2884815
https://rxmarbles.com

	Abstract
	1 Introduction
	1.1 Reactive Programming
	1.2 ReactiveX and RxJS
	1.3 Debugging Process Model
	1.4 Debugger Concepts
	1.5 RxJS Debugging Utilities

	2 Interviews and War Stories
	2.1 Interviews
	2.2 War Stories
	2.3 Insights

	3 Validation
	3.1 Study Design
	3.2 Study Execution and Results
	3.3 Interpretation

	4 Future Work
	5 Threats to Validity
	5.1 External Validity
	5.2 Internal Validity
	5.3 Construct Validity

	6 Conclusion
	Acknowledgments
	References

